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• Explores the novel intersection of three areas of physics and 
mathematics
– Neutron transport theory
– Symmetry analysis techniques (Lie Group)
– Sensitivity analysis

• Motivation
– Simulation has become a powerful tool for analyzing complex systems
– These tools model continuous calculus using algebraic equations

• Introduces assumptions and approximations into a simulation program
• Need to ensure simulations do not violate assumptions and approximations

– Users are also capable of making errors
• Simplifications in modeling
• Developing input files

– Comparison with experimental data is the best way to ensure simulations 
were conducted correctly

– Sometimes experimental data is difficult to obtain if any exists at all
• Such as with spent fuel casks
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• When no experimental data is available
– We can use analytic or semi-analytic models to compare simulations

against
– If the analytic results agree with simulation results

• Confidence in gained in simulation results and in model input
• The user understands the physics that is occurring
• User is capable of analyzing simulation results appropriately

– If the two disagree
• The user learns:

– Important physics was overlooked 
– Input may be wrong

• The user learns about the problem
• Leads to a deeper understanding and more in-depth analysis 



Introduction

11/21/18 |   8Los Alamos National Laboratory

• Comparisons between computational and analytic results are further 
exemplified through a sensitivity analysis

• Computational sensitivity analysis
– Requires identifying possible parameters that could affect the results

– Developing a new model for each parameter variation
– Result, is resource intensive

• Analytic sensitivity analysis
– Requires identifying possible parameters that could affect the results

– By using a generalized form of a directional derivative, parameter 
sensitivities can be calculated directly

– Result, is less intensive than for computational sensitivity analysis

• When the results of sub-region and sensitivity analysis compare 
favorably, confidence is gained in computational analysis
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• The aforementioned processes are generic and can be applied to any 

system governed by differential equations

• As a proof of principal, these processes will be applied to a Holtec HI-

STORM 100 spent fuel cask

https://holtecinternational.com/productsandservices/wastea

ndfuelmanagement/dry-cask-and-storage-transport/hi-

storm/hi-storm-100/

• The goal of current work is to 

seek a sub-region of a detailed 

problem 

– Simplifications are applied to the 

Boltzmann transport equation 

(BTE) for neutrons

– Solutions are compared to 

computational solutions of the 

sub-region

– Captures elemental physical 

processes occurring in the sub-

region of the full-scale problem
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• To develop a methodology for using analytic models to verify 
simulation results
1. Identification of sub-regions where BTE can be applied
2. Solutions to BTE

• Symmetry analysis procedure
3. Comparison of computation and analytic results
4. Sensitivity analysis of simulation models
5. Sensitivity analysis of analytic models
6. Comparison of simulation and analytic sensitivity analysis results
7. Analysis of underlying physics of HI-STORM 100 spent fuel cask

• The proposed methodology develops a novel procedure for analyzing 
simulation results when no experimental data can be acquired
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• Simulation has become prevalent in spent fuel cask analysis
– Radiation shielding capabilities
– Fuel shifting
– Imaging the interior of a cask

• Holtec International HI-STORM 100 
spent fuel cask was chosen
– Most used spent fuel cask storage 

system
– Used to store fuel from boiling water 

reactors (BWR) or pressurized water 
reactors (PWR)

• Provides radiation protection, heat
transfer, environmental protection, 
fuel security, and accident 
protection (i.e. if the cask were 
dropped)
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• The overpack:

– Inner anulus of concrete

– Outer shell of carbon steel 

– Neutron and gamma shielding above
and below fuel region

– Inner channels for air to flow through

– Multi-purpose canister (MPC) holds 

spent fuel in center of overpack

• Concrete provides:

– Neutron shielding

– Protection in the event the cask is 

dropped

• Steel provides:

– Gamma shielding

– Structure to the cask

– Protection to overpack and MPC
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• Three main types of MPC
– MPC-24: Used for PWR fuel
– MPC-32: Used for PWR fuel (chosen for proposed work)
– MPC-68: Used for BWR fuel

• Honey-comb, stainless steel structure supports fuel and provides heat 
transfer

• Boral pad (neutron absorber) placed between cells
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• The focus of current work is to identify a sub-region where analytic 
models can be used to verify simulation results
– The proposed work is focused on neutron transport
– Analytic models are based on the BTE

• Using a heuristic approach to derive BTE in phase-space defined by dV, 
dE, d!", and dt

• BTE is a balance equation
1. Gain Mechanics

a) All neutron sources in dV
b) Neutrons streaming into dV through an infinitesimal surface dS
c) Neutrons in a different phase space entering dV, dE, d!", dt

2. Loss Mechanics
a) Neutrons leaking out of dV through dS
b) Neutrons undergoing an interaction in dV
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• Source term

• ! = ∫$ %&' ((*, ,, -.) %,%-.

• Interaction term

• 0 = ∫$ %&' Σ2(*, ,)3(*, ,, -.) %,%-.

• In-scattering term

• 4 = ∫$ %&' ∫56 %-.∫7
8%,9 Σ:(,9 → ,, -.9 → -.)3(*, ,9, -.′) %,%-.

• Streaming term

• % − > = ∫$ %&'-. ? 3(*, ,, -.) %,%-.

! + > + 4 − % − 0 = 0



Background: Neutron Transport

11/25/18 |   17Los Alamos National Laboratory

• The steady-state BTE for neutrons is:
!" # $%(', ), !") + Σ-%(', ), !")

= /
01
2!"/

3

4
2)567 )5 → ), !"5 → !" %(', )′, !"′) + :(', ), !")

• First-order, linear, integro-differential equation
– One of the most difficult types of problems to solve directly

• Applying assumptions allow us to solve the BTE
– Any assumption we apply will not hold across the full problem

• Identifying a sub-region allows us to apply assumptions
– In an appropriate sub-region, assumptions will hold 

– The BTE can be reduced to a tractable form

• If assumptions can be relaxed, we can use a more accurate form of 
the BTE
– Symmetry analysis becomes useful
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• Many partial-differential equation solving techniques rely on 
manipulating an equation into a form for which a solution is known
– Becomes difficult or impossible as equations become more complex

• Symmetry analysis provides a more standardized approach 
– Change of variables 

• The equation is mapped into a new coordinate system
– Invariance

• When an equation is unchanged under the action of an operation
• Solutions to new equation will be solutions to old equation

A

BC

A

AB B

C C
600

rotation
1200

rotation

Not Invariant InvariantOriginal
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• Invariance Example

• Transformation operations:

! = #! + %, ' = #' + %, ('
(! =

( #'
( #!

• Applying transformation operations

) !, ', ('(! = ( #'
( #! − + #,-. / #0-. = 1 #'

1 #! − +
#,/ #0 = 2) #!, #', ( #'( #!

• The two functions are the same
– An example of a translation symmetry
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• We are looking for symmetries which leave our equation invariant

• These symmetries can be found systematically

• Introducing an example:

! ", $, %$%" = %$
%" − $

" − tan $
" = 0

• For simplicity, we define , ≔ ./
.0 and the transformations

1" ≡ 3 ", $, ,; 5 , 1$ ≡ 6 ", $, ,; 5 , ,̃ ≡ 8(", $, ,; 5)
• Determining general transformations is difficult if not 

impossible!

• Sophus Lie discovered the localized evaluation is 

equivalent to finding 3, 6, and 8
– Through use of Taylor expansion

https://en.wikipedia.org/wiki/Sophus_Lie
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• Taking the Taylor expansion about ! = 0

• Evaluating the derivatives

$% − % = ! ' (
() + +

(
(, + -

(
(. % + !/ ' (

() + +
(
(, + -

(
(.

/
% + 0 !1 ;

' = (3
(! , + =

(5
(! , - =

(6
(!

• We define the prolonged group generator

789 ≡ ' (
() + +

(
(, + -

(
(.

• An invariant operation on % means $% − % = 0
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• To solve !"#{%} = 0, we return to our example

!"# ) = * +
,- +

+
,- /01

- +
, + 2 1

, +
1
, /01

- +
, + 4 = 0

• A solution for *, 2, and 4 is
* = ,, 2 = +, 4 = 0

• The group generator is then

# = , 6
6, + +

6
6,

• To construct our similarity variable, we apply # to some function, 
) ,, + and set # ) = 0

• The previous step ensures symmetries found in ), will be the same as 
the symmetries in our problem 
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! " = $ %"%$ + '
%"
%' = 0

• Rearranging terms produces our characteristic system
%"
0 = %$

$ = %'
'

• Solving the characteristic system will yield constants 
– Function of independent and dependent variables

• These constants are called similarity variables 
– Used to simply our original problem

• Solving 
%"
0 = %$

$ , %$
$ = %'

'
yield

" = *+,-./,., 0 = '
$
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• The derivative can be re-written as 
!"
!# =

!%
!# # + %

• Re-writing the original equation in terms of r and x
!%
!# # − tan % = 0

• This is a separable equation with the solution
% = ,-./0 1# ; 1 ≡ 13.,45.4

• Re-writing the solution in the original co-ordinate system
" = #,-./0 1#

• We now arrive at the solution to the original equation
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• Procedure:

1. Re-write ! ", $, %&%' as ! ", $, (
2. Apply the prolonged group generator to set up determining 

equations

3. Solve the determining equations for ), * and +
4. Apply the completed group generator to find the determining 

system

5. Solve the characteristic system to find similarity variables

6. Re-express ! in terms of the similarity variables and arrive at a 
simplified expression

7. Solve the simplified expression

8. Re-express the solution to the simplified expression in the original 
co-ordinate system
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• A physical system is modeled by linear or non-linear differential 
equations 
– Define the system’s response to an input based on parameters

• Typically, there is a level of uncertainty attached to each parameter
• The practice of ascertaining the behavior of a system in response to 

parameter variations is known as sensitivity analysis
• In this work, we use a procedure developed by Dan Cacuci

– Based on a direct correspondent between local sensitivity analysis and
Gâteaux-derivative (G-derivative)

– Cacuci’s method is more general and less computationally intensive than 
other methods

• Sensitivities can be used to
– Rank parameters by importance
– Asses the change in response due to parameter variation
– Perform uncertainty analysis
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• G-derivative

!" #$; ℎ ≡ lim+→$
" #$ + .ℎ − " #$

.

• The G-derivative is a generalization of a directional derivative

• Only need the first G-derivative of our functions to find sensitivities

• Cacuci developed a procedure called the Forward Sensitivity Analysis 
Procedure (FSAP)

– Solving the Forward Sensitivity Equations (FSE) determines the system’s 
response to a single variation

– Needs to be repeated for different variations of parameters

– Repeated solving of FSE for each parameter variation constitutes the FSAP
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• A system is described by coupled operator equations
! " # = % "(')

• Boundary conditions are used to solve the previous system of
equations

) " # − + " = 0

• Taking the first G-derivative yields
! "- ./ + !′2("-)#- .2 − 3% "-; .2 = 5
) "- ./ + )′ "- #- .2 − 3+("-; .2 ) = 5

• Solving for ./ allows us to find the sensitivities
3> . ≡ >@2.2 + >′/./
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• Consider the following:

! "
#$
"%# − Σ($ + * = 0; % ∈ −/, /

• with the boundary condition
$ ±/ = 0

• A detector placed within the slab would read 
2 $, 3 ≡ Σ5$ 6 ; 0 < 6 < /

• The parameters are:
3 ≡ (Σ(, !, *, Σ5)
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• The nominal flux is found from solving the diffusion approximation

!" # = %"
Σ'"

1 −
cosh . Σ'"

/"

cosh 0 Σ'"
/"

• The nominal response is then
1" !", 3" = Σ4"!"(# = .)

• We define the variation of the parameters to be
78 ≡ :Σ', :/, :%, :Σ4
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• We apply the G-derivative to the response

!" #$, &$; ( = *
*+ " (#$, &$) + +( ; ℎ ≡ ℎ1, ℎ2

• Evaluating yields
!" #$, &$; ( = 342 #$, &$ (2 + 341(#$, &$)(1

• The first term on the RHS is the “direct-effect” term
342 #$, &$ (2 = !Σ6#$(7 = 8)

• The second term is the “indirect-effect” term
341 #$, &$ (1 = Σ6$ℎ1 7 = 8

• The direct-effect term can be calculated 
• ℎ1 needs to be found
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• Use the definitions of the FSE 

! "# ℎ% + !'(("
*),* -( = / -(

0; ! "* ≡ 3*
40

450
− Σ8

*

• With the boundary condition
ℎ% ±: = 0

• The second term on the LHS is

!'(("
*),* -( ≡ <3

40,*

450
− <Σ8,

* + <=

• Solving the boundary value problem for ℎ%
ℎ% 5

= >?(cosh 5D − cosh ED ) + >0(5 sinh 5D cosh ED − E sinh ED cosh(5D)) ;

>? =

<Σ8=
*

Σ8
* − <=

Σ8
* cosh ED

, >0 =

<3

3*
−
<Σ8

Σ8
* =*

2 3*Σ8
* cosh(ED) 0

, D =
Σ8
*

3*
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• We now can write the expression for the sensitivities
!" #$, &$ ; ( = !Σ+#$ , = - + Σ+$ℎ0(, = -)

• Repeat this process for all variations of parameters in (0
• Knowing the importance of each parameter can 

– Guide future model development to decrease uncertainty in the most
important parameters

– Possibly reduce analytic models to include only the most important 
parameters
• Reduce computational resources needed to evaluate a problem

• Results from the FSAP will be compared to computational sensitivity 
analysis results 
– In computational work, various simulation inputs will be made

• Parameters will be varied to investigate the effects on simulation results
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• The HI-STORM 100 spent fuel cask was simulated in MCNP
• Geometry was simplified for simulations
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• Due to the complexity of the cask, !" of the cask was simulated
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• Source term for MCNP simulations and analytic models need to be
found

• Next Generation Safeguards Initiative (NGSI) has a library of spent 
fuel compositions
– Made for use with 

MCNP
– Running MCNP in 

initialization mode 
creates a table detailing 
the composition of 
materials in the 
problem

• Compositions were 
used for ORIGEN-S 
models
– 0-dimensional decay 

and irradiation code
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• A single fuel cell was chosen as the extent of the sub-region
– Neutron flux through a Boral pad

• Relatively monoenergetic flux
• High thermal neutron absorption cross section

• Still need to determine how transport will be handled
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• Source spectrum is comprised mainly of fast neutrons
– Maybe energy dependence of BTE can be handled in one or two groups?

• Comparing the cross sections of materials to determine how energy 
dependence is handled

• A two-group model allows for treatment of physics in fast and thermal 
regions separately 
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• The diffusion equation is a common representation of the BTE
– There are known solutions

• The mean free path is on the order of (or higher than) the thickness of 
our Boral pad (~0.25 cm) 

• BTE is a more appropriate choice of model
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• The threshold between thermal and fast groups needs to be set

• Below 1eV, absorption processes comprise approximately 100% of 
interactions

• Setting the threshold at 1eV allows for further assumptions in each 
region to hold 
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• Two-group BTE 
• Fast group (above 1eV)
!Ω#
$%&
$' + Σ*,&%& = Σ-,&&%& + .&

• Assumptions:
– .& = 0
– Σ*,& ≈ Σ-,&
– Σ1,&2 ≡ Σ-,& − Σ-,&& = Σ-,&2

!Ω#
$%&
$' + Σ1,&2%& = 0

• The only mechanisms present 
are due to scattering

• Thermal group (below 1eV)
!Ω#
$%2
$' + Σ*,2%2 = Σ-,&2%& + Σ-,22%2 + .2

• Assumptions:
– .2 = 0
– Σ*,2 ≈ Σ5,2
– Σ-,22 = 0

!Ω#
$%2
$' + Σ5,2%2 = Σ1,&2%&

• The only source of neutrons are those 
down-scattered from the fast group
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• Group averaged cross sections were calculated
– From Duderstadt and Hamilton

Σ" =
∫%&'(
%& )*Σ"
∫%&'(
%& )*

• The removal cross section governs the probability that a neutron will 
undergo a scattering event and be removed from group 1 

• Lewis defines an approximation for the removal cross section

Σ+,-. ≈
1
1 Σ2

• 1 is the number of collisions for a neutron to slow down from one 
energy to another
– In Boral, 1 ≈ 125 5677898619 for a neutron to slow from 1MeV to 1eV
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• The solutions to the fast and thermal group equations

• !" is the portion of the source flux above 1eV

• !# is the portion of the source flux below 1eV

• A final correction was made to the analytic solutions

– Since Boral pads are placed between two sources, a second source term 

was geometrically attenuated from the opposite side of the pad and added 

to each flux correspondingly 
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• The flux from MCNP shows a similar trend to the analytic solution
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• What was learned 
– Input Correctness

• Original mesh tally location extended 0.2 mm into stainless steel 
• Affect on flux was small
• Original results appeared to be correct but did not match analytic results
• Result was the tally location was fixed

– Underlying physics
• Flux is mainly fast

– Scattering dominated
– Slowing down processes is most prevalent
– Thermal flux is strongly attenuated by Boral

» Hardens the flux

– Future Investigations
• Temperature affects on cross section

– Doppler broadening of cross sections
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• Year 1 goals
– More detailed MCNP geometry will be developed

• Detailed fuel bundles
• Change air vent structure

– To show the versatility of the method, five to six more regions will be 
identified and analytic models will be compared with MCNP results
• Flux through cement anulus
• Flux through carbon steel shell
• Flux through lid bottom plate 
• Flux through cement above MPC
• Dose at cask surface (can be compared to literature)
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• Year 2 goals
– Identification of reoccurring parameters in analytic models for sensitivity

analysis
• Σ", Σ#, Σ$, Σ%

– MCNP sensitivity analysis of parameters
• Vary cross section data through manual addition of uncertainty
• S(&, () cards to vary the cross section data based on temperature

– FSAP sensitivity analysis
• Common analytic equations from sub-regions 

– Comparison of sensitivity analysis results
– Development of final methodology of analysis process

• Focused on spent fuel cask modeling
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• 3 expected papers
– Symmetry analysis of simplified form of BTE
– Verification of spent fuel cask simulations using analytic models

– Sensitivity Analysis of neutron transport equations

• Presentations
– American Nuclear Society

– American Physical Society – Division of Nuclear Physics
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! = #$
#%

! − #$#% = 0
! ∗ #% − #$ = 0

)*+ ! ∗ #% − #$ = 0
!)*+ #% + #%)*+ ! − )*+ #$ = 0

• Use )*+ #% = #()*+ . )

0 + 12
1% +

12
1$ ! ! − 13

1% +
13
1$ ! = 0

0 + 1 + 0! ! − 0 + ! = 0
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!"
!# =

!
!# %# = !%

!# # + %
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• Taking !" = (%", '")
• The most general and fundamental concept for the definition of the

sensitivity of a response to variations in the system parameters is the
G-derivative

)* !"; , ≡ .
./ * !" + /,

12"
= lim1→"

* !" + /, − *(!")
/

• The G-differential of )* !"; , is related to the total variation 
* !" + /, − *(!") of * at !" through the relation

* !" + /, − *(!") = δ* !"; , + ∆,,:;/ℎ lim1→"
∆(/,)
/ = 0


